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PREVIEW: SETUP

Consider a dynamic latent factor model with linear loadings

ri,t+1 = z>i,tΓβ︸ ︷︷ ︸
β>i,t

f t+1 + εi,t+1, E[εi,t+1|zi,t] = 0,

where we observe, for assets i and time periods t,

• asset excess returns ri,t+1 ∈ R and

• asset characteristics zi,t ∈ R p.



PREVIEW: MAIN THEORY CONTRIBUTIONS

In this setup, under the novel asymptotics of p, T,N→∞, contribute
a new estimation procedure for

• latent loadings Γβ ∈ R p×k and

• latent factors f t+1 ∈ Rk, for all t;

and, prove the consistency of these estimators.

Also, I extend to this setting a classic asset pricing test and provide an
asymptotically valid inference procedure.



MOTIVATION
Static observable factor model:

ri,t+1 = β>i f t+1 + εi,t+1

(NT + Tk) data & (Nk) params.

Static latent factor model:

ri,t+1 = β>i f t+1 + εi,t+1

NT & Nk + Tk

Dynamic latent factor model:

ri,t+1 = z>i,tΓβ f t+1 + εi,t+1

NT(1 + p) & pk + Tk

∀t ∈ {1, . . . , T} ∧ i ∈ {1, . . . ,N} :

Observed:

ri,t+1 ∈ R asset excess returns

zi,t ∈ R p asset characteristics

Unobserved:

εi,t+1 ∈ R idiosyncratic error

f t+1 ∈ Rk low-dim. factors

Γβ ∈ R p×k loading mapping

H ∈ Rk×k rotation matrix



SETUP
Assume for time periods t = 1, . . . , T and assets i = 1, . . . ,N, we observe

• asset excess returns ri,t+1 ∈ R and asset characteristics zi,t ∈ R p.

Assume the model:

ri,t+1 = z>i,tΓβ︸ ︷︷ ︸
β>i,t

f t+1 + εi,t+1, E[εi,t+1|zi,t] = 0,

where

• f t+1 ∈ Rk are low-dimensional latent factors and

• Γβ ∈ R p×k are unknown factor loading parameters.

– Key assump.: Γβ is exactly row sparse, i.e. most rows exactly zero.



EXTENDED SETUP (1/2)
Within this framework, we address an asset pricing research question.

What is the risk premium of an observable nontradable factor gt+1 ∈ R?

Asset pricing context:

• Risk premium: return for exposure to the factor, ceteris paribus.

• If tradable, the risk premium is the time-series average of the factor.

• If nontradable, form factor mimicking-portfolio.

• Following Giglio, Xiu, and Zhang (2021),
– assume latent factor model recovers true factor model and

– project observable nontradable factor onto latent factors.



EXTENDED SETUP (2/2)
What is the risk premium of an observable nontradable factor gt+1 ∈ R?

Assume for true factors f t+1 :

f t+1 := γ + vt+1, E[vt+1] = 0

gt+1 = δ + η>vt+1 + ε
g
t+1, E[vt+1ε

g
t+1] = 0.

where

• η ∈ Rk is an unknown parameter mapping and

• ε
g
t+1 is measurement error in gt+1.

Our target parameter is γg = η>γ.



THEORETICAL CONTRIBUTIONS

The model:

ri,t+1 = z>i,tΓβ(γ + vt+1) + εi,t+1, E[εi,t+1|zi,t] = 0, E[vt+1εi,t+1] = 0,

gt+1 = δ + η>vt+1 + ε
g
t+1, E[vt+1ε

g
t+1] = 0.

Two contributions, under novel asymptotics of p, T,N→∞:

1. consistently estimate latent loadings Γβ and factors f t+1 and

2. conduct inference on γg = η>γ

– under novel use of a dynamic latent factor model.
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THEORY LITERATURE REVIEW

The scope of the relevant literature is enormous. To name a few:

• Dynamic latent factor models: Connor and Linton (2007), Fan, Liao,
and Wang (2016), Kelly, Pruitt, and Su (2019) IPCA , Kelly, Pruitt, and Su
(2020), etc.

• Tests of observable factors: Fama and MacBeth (1973) Fama-MacBeth , Feng,
Giglio, and Xiu (2020) Factor Zoo , Giglio and Xiu (2021), etc.

• DML: Belloni, Chernozhukov, and Hansen (2014), Chernozhukov et al.
(2018), Semenova and Chernozhukov (2021), etc.



ESTIMATION (1/4)

Rewrite the model:

ri,t+1 = z>i,tΓβ f t+1 + εi,t+1,

= zi,t,jct+1,j + z>i,t,–jct+1,–j + εi,t+1, E[εi,t+1|zi,t] = 0,

ct+1,j := Γ>β,j f t+1.

To estimate ct+1,j ∀t, j

• run Lasso to account for p ∼ N, but then biased inference for γg;

• instead run Double Selection Lasso (DSL).



ESTIMATION (2/4)

Model:

ri,t+1 = zi,t,jct+1,j + z>i,t,–jct+1,–j + εi,t+1, E[εi,t+1|zi,t] = 0,

ct+1,j := Γ>β,j f t+1.
(1)

Procedure:

1. To estimate ĉt+1,j, run T × p cross sectional DSL regressions. DSL

2. To estimate Γ̂β ∈ R p×k and F̂ ∈ RT×k, run PCA on Ĉ := F̂Γ̂>β ∈ RT× p.

3. Given exact row sparsity, soft-threshold Γ̂β to set most rows to zero for Γ̌β.



ESTIMATION (3/4)
Model for risk premia of nontradable observable factors:

ri,t+1 = z>i,tΓβ(γ + vt+1) + εi,t+1, E[εi,t+1] = 0, E[vt+1εi,t+1] = 0,

gt+1 = η>vt+1 + ε
g
t+1, E[εgt+1] = 0, E[vt+1ε

g
t+1] = 0.

Identification:
• Cannot jointly estimate η and vt+1 (Γβ and f t+1) without further restrictions.

E.g., three classic approaches of Bai and Ng (2013).

• So parameters are identified up to rotation matrix H ∈ Rk×k. That is,
η = H–1η0 and γ = Hγ0 (Γβ = Γ0

bH
–1 and f t+1 = H f0

t+1).

• Utilize rotation invariant result of Giglio and Xiu (2021):

γg = η>0 H
–1>Hγ0 = η>γ



ESTIMATION (4/4)
Model for risk premia of nontradable observable factors:

ri,t+1 = z>i,tΓβ(γ + vt+1) + εi,t+1, E[εi,t+1] = 0, E[vt+1εi,t+1] = 0,

gt+1 = η>vt+1 + ε
g
t+1, E[εgt+1] = 0, E[vt+1ε

g
t+1] = 0.

(2)

Procedure: γ̂g = η̂>γ̂

• Estimate factor innovations v̂t+1 and loadings Γ̌β as before but with
demeaned returns.

• Estimate latent factor risk premia γ̂ via CS OLS of average returns r̄ ∈ RN on
estimated latent factor loadings ¯̂

β := T–1∑
t Zt Γ̂β ∈ RN.

• Estimate latent to observable factor mapping η̂ via TS OLS of demeaned gt+1

on estimated latent factor innovations v̂t+1.
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KEY ASSUMPTIONS (1/2)

Assumption (Consistency of DSL)

1. Sparse Loading: Loading matrix Γβ admits an exactly sparse
form. That is, for ∃s ∈ N+, i.e. p > s ≥ 1, Γβ has at most s nonzero
rows:

∑ p
j=1 1

{∥∥Γβ,j
∥∥

1 > 0
}
≤ s. Additional DSL Assumptions



KEY ASSUMPTIONS (2/2)

Assumption (Consistency of Latent Factor Model)

2. Nonzero and distinct eigenvalues: from the infeasible

eigendecomposition of (T p)–1CC>, the k largest eigenvalues λi
for i ∈ {1, . . . , k} are bounded away from zero and distinct,

min
i:i 6=κ

|λκ – λi| > 0.

Additional Latent Factor Model Consistency Assumptions



ASYMPTOTIC RESULTS (1/3)

Proposition (Consistency of Latent Factors)
Under the DSLFMmodel (1) and aforementioned Assumptions 1 and 2,
with additional Appendix Assumptions 1-6, where T,N, p→∞, then
for all t the latent factor estimator has the property that

f̂ t+1 – H> f0
t+1 = O p

(√
s log(T p)

N

)
.



PROOF OUTLINE: CONSISTENT LATENT FACTORS

Recall C = FΓ>β , thus (T p)–1CC> = (T p)–1FΓ>β ΓβF>.

Key rate: maxt,j |̂ct+1,j – ct+1,j| = O p
(√

log(T p)
N

)
.

Gives control over the distance between feasible and infeasible matrix:

∥∥∥(T p)–1ĈĈ> – (T p)–1CC>
∥∥∥ = O p

(
log T p
N

)
.

Davis Kahan Theorem bounds distance between eigenvectors by distance

between matrices.

Finally, use Wely inequality to bound distance between eigenvalues.



ASYMPTOTIC RESULTS (2/3)

Proposition (Consistency of Latent Factor Loadings)
Under the DSLFMmodel (1) and aforementioned Assumptions 1 and 2,
with additional Appendix Assumptions 1-6, where T,N, p→∞, then
the latent loading estimator has the property that

Γ̌β – Γ0
βH

–1 = O p

(√
s log(T p)

N

)
.



PROOF OUTLINE: CONSISTENT LOADINGS
Aforementioned results yield:

∥∥∥Γ̂β – Γ0
β(H>)–1

∥∥∥
∞

= O p

(√
log(T p)

N

)
.

Utilizing Theorem 2.10 from Belloni et al. (2018) under exact sparsity of Γ0
β, s.t.

λ ≥ (1 – α) – quantile of
∥∥∥Γ̂β – Γ0

β(H>)–1
∥∥∥
∞

,

then given α→ 0 and λ .
√

log(T p)/N, we have for all q ≥ 1

∥∥∥Γ̌β,l – Γ0
β(H>)–1

l

∥∥∥
q
.P s1/q

√
log(T p)

N
.



ASYMPTOTIC RESULTS (3/3)

Theorem (Normality of Observable Factor Risk Premium)
Under the models (1) and (2); Assumptions 1 and 2; Appendix
Assumptions 1-10, and, if Ts2 log(T p)/N→ 0, then as T,N, p→∞ the

estimator γ̂g obeys

√
T

(γ̂g – γg)
σg

d−→ N(0, 1).



PROOF OUTLINE: NORMALITY
√
T
(
γ̂g – γg

)
=
√
T
(
η̂>γ̂ – η>γ

)
=
√
Tγ> (η̂ – η)︸ ︷︷ ︸
→dN(0,σ2)

+
√
Tη> (γ̂ – γ) + o p(1).

√
Tη> (γ̂ – γ) =

√
T (γ̂ – γ̃) +

√
T (γ̃ – Hγ0)

= o p(1) +
√
T

(
β̄>β̄
N

)–1
β̄>

N
1
T

∑
t
ZtΓ0

βv
0
t+1︸ ︷︷ ︸

→N(0,σ2)

+
√
TH>

(
Γ0>
β Z̄>Z̄Γ0

β

N

)–1
β̄>

N
1
T

∑
t

εt+1︸ ︷︷ ︸
o p(1)



MONTE CARLO EVIDENCE (1/2)
Goal: study the finite-sample estimation error of our latent loading and factor

estimators and the coverage properties of our risk premium estimator compared

to relevant benchmarks.

DGP: for S = 200, T = 100,N = 500, k = 3, p ∈ {10, 50}, s = p/10

• Latent loadings: fit IPCA to empirical panel; set p – s rows to zero.

• Latent factors: fit IPCA to empirical panel; fit VAR(1) to fitted latent factors;
simulate from fitted VAR(1) with normal innovations.

• Characteristics: fit panel VAR(1) to demeaned empirical panel of {Zt}Tt=1 and
simulate from VAR(1) with normal innovations. Set means to bs.

• Returns and observable factor are generated according to the model where

errors are calibrated to empirical R2.



MONTE CARLO EVIDENCE (2/2)

Low-Dimensional: p = 10 Simulation Results Low-Dim.

• Factor of∼ 3 superior estimation error for Γβ.

• Order of magnitude inferior estimation error for f t+1.

• DSLFM under-covers (6-9%) while Giglio over-covers (2-4%) γg.

High-Dimensional: p = 50 Simulation Results High-Dim.

• Factor of >3 superior estimation error for Γβ.

• Inferior (×4) estimation error for f t+1.

• DSLFM degrades 1% while Giglio degrades > 3% γg.
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APPENDIX: IPCA

The model is
ri,t = z>i,t–1Γδ f t + εi,t.

The objective function is to minimize the sum of the squared errors:

min
Γδ, f t

T∑
t=1

(rt – Zt–1Γδ f t)> (rt – Zt–1Γδ f t) .



APPENDIX: IPCA

The first-order conditions are

f̂ t =
(
Γ̂ ′δZ
′
t–1Zt–1Γ̂δ

)–1
Γ̂ ′δZ
>
t–1rt,

vec
(
Γ̂ ′δ

)
=
(T–1∑
t=1

Z′t–1Zt–1 ⊗ f̂ t f̂
′
t

)–1(T–1∑
t=1

[
Zt–1 ⊗ f̂

′
t

]′
rt

)
.

• Factor realizations are period-by-period cross section regression coefficients
of rt on the latent loading matrix δt–1.

• Γδ is the coefficient of returns regressed on the factors interacted with
firm-specific characteristics.



APPENDIX: IPCA
Similarities:

• (Second-stage) factor model relationship and joint fitting.

• Cross-sectional and time-series two step procedures a la Fama MacBeth.

• Efficiency gains from using asset covariates.

• Accommodate unbalanced panels.

Pro Double Lasso:

1. Sparse estimation

2. Convex objective functions

3. Model high dimensional p

4. Closed-form inference for target

question

Pro IPCA:

1. Conceptually simpler
optimization

2. Fewer assumptions for
asymptotic theory

3. Rapid estimation
Back to Lit Review Back to Est



APPENDIX: FAMA-MACBETH REGRESSIONS

The classic observable factor model estimation is the Fama and MacBeth (1973) procedure.

• We first run N TS regressions for each asset followed by T CS regressions for each time period.

– That is, we first estimate β̂i for each asset i by running TS OLS of {ri,t+1}Tt=1 on { f t+1}Tt=1.

• Next, we run ∀t the CS OLS of asset excess returns {ri,t+1}Ni=1 on estimated factor loadings {β̂i}Ni=1.

– We recover estimates λ̂t for the risk premium λt = Et[ f t+1] as well as

– the pricing errors from the cross-sectional residuals, α̂i,t+1.

• Finally, we estimate the parameters of interest: the static risk premium λ̂ and the static average

pricing error α̂i as the time-series averages of the relevant estimator, λ̂t and α̂i,t+1, respectively.

Back



APPENDIX: DSL ESTIMATION PROCEDURE

ri,t+1 = zi,t,jct+1,j + z>i,t,–jct+1,–j + εi,t+1, E[εi,t+1|zi,t] = 0,

zi,t,j = z>i,t,–jδt,j + εzi,t,j, E[εzi,t,j|zi,t,–j] = 0,

ct+1,j := Γ>β,j f t+1.

For ĉt+1,j, run T × p Double Selection Lasso CS regressions ∀t, j.

1. Lasso {ri,t+1}Ni=1 → {zi,t}Ni=1 for Î1 = nonzero elements of ĉt.

2. Lasso {zi,t,j}Ni=1 → {zi,t,–j}Ni=1 for Î2 = nonzero elemnts of δ̂t,j.

3. Define Î := Î1 ∪ Î2 ∪ Î3 where Î3 is manually chosen.

4. OLS {ri,t}Ni=1 on elements of {zi,t–1}Ni=1 in Î. Back



APPENDIX: ASSUMPTIONS
Assumption (DSL Uniform Consistency)

1. Bounded Characteristic Portfolios: For a finite absolute constant M and ∀t, j,∣∣ct+1,j
∣∣ =
∣∣∣Γ>β,j f t+1

∣∣∣ < M.

2. Sparsity rate: The sparsity index obeys s2 log2 ( p ∨ N) /
(√

N log(T p)
)
≤ δN,T .

Additionally, log3 p/N ≤ δN,T .

3. Weak dependence between the first- and second-stage errors: There exists a

positive constant M such that ∀ p, T,N :∣∣∣∣∣
√

1
N

N∑
i=1

εzi,t,jεi,t+1

∣∣∣∣∣ ≤ M log(T p).

4. Additional standard DSL assumptions in Appendix C.2 of the paper.

Back



APPENDIX: ASSUMPTIONS

Assumption (Consistency of Latent Factor Model)

5. Factors: E
∥∥∥ f0

t+1

∥∥∥4
≤ M <∞ and T–1∑

t f
0
t+1 f

0>
t+1 → p Σ f for

some k × k positive definite matrix Σ f .

6. Factor Loadings: ∀j,
∥∥Γβ,j

∥∥ ≤ M <∞ and
∥∥∥Γ>β Γβ/ p – ΣΓ

∥∥∥→ 0
for some k × k positive definite matrix ΣΓ .

Back



APPENDIX: ASSUMPTIONS

Assumption (Inference)

∃ a generic absolute constant M <∞ such that for all p, T,N :

7. Bounded idiosyncratic errors: E[(
∑

t εi,t+1)2] ≤ TM.

8. Bounded scaled factor innovations: E[(
∑

t z
>
i,tΓ

0
βv

0
t+1)2] ≤ sTM.

9. Bounded measurement errors: E[(εgt+1)2] ≤ M.



APPENDIX: ASSUMPTIONS
Assumption (Inference)

9. Convergence of characteristics:
1
NT
∑

i
∑

t′ E[zi,t,j]zi,t′,j′ → p Zt,j,j′ uniformly over t, j, j′ for
j, j′ ∈ {1, 2, . . . , p} and a nonstochastic finite constant Zt,j,j′ ∈ R.

10. CLT: As T →∞,

1√
T

∑
t

(
v0
t+1ε

g
t+1

Πtv0
t+1

)
d−→ N(0,Φ)

for randommatrixΠt ∈ Rk×k and nonstochastic matrix

Φ ∈ R2k×2k.



APPENDIX: SIMULATION LOW-DIMENSIONAL

Back to Simulation Result Summary.



APPENDIX: SIMULATION HIGH-DIMENSIONAL

Back to Simulation Result Summary.


